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1 Introduction

Financial intermediaries are exposed to interest rate risk. They have

multiple sources of exposure arising from cash flow differences across

balance sheet components as well as contractual or embedded options with

asymmetric payoff characteristics. Although intermediaries have a wide

range of asset and liability management tools available to hedge interest

rate risk, they do not fully insulate themselves from all potential changes in

interest rates for several reasons.1 Financial markets may be incomplete,

fully hedging may be prohibited by its cost, and carrying interest rate

risk may be a source of earnings.2 Thus, financial intermediaries carry

some residual exposure to interest rate risk, which could have significant

consequences for financial stability and macroeconomic outcomes in bad

states of the world (Holmstrom and Tirole, 1997; Brunnermeier and

Sannikov, 2014).

In this paper, we propose a new method to measure the time-varying

residual interest rate risk exposure of financial intermediaries using minute-
1Risk managers at financial institutions are expected to monitor and manage interest

rate exposures at prudent levels, but not fully eliminate the risk. Supervisors provide
detailed guidance on management practices and coordinate their standards. See, for
example, the Office of the Comptroller of the Currency (OCC) Revised Handbook March
2020, the Federal Deposit Insurance Corporation (FDIC) Letter on Financial Institution
Management of Interest Rate Risk 2010, the Federal Reserve Board (FRB) Supervisory
Manual on Interest Rate Risk, the National Association of Insurance Commissioners
(NAIC) Risk-Based Capital for Insurers Model Act, the OCC-FDIC-FRB Joint Policy
Statement on Interest Rate Risk 1996, and the Basel Committee on Banking Supervision
Guidance on Standards 2014.

2Even an established hedging strategy may be exposed to “basis risk”—that is, it
might lose its effectiveness.
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by-minute financial market data. We calculate the daily realized covariance

of high-frequency stock returns for those intermediaries and Treasury

security returns. We construct a conditional covariance by projecting out

aggregate stock market returns from stock returns and Treasury security

returns. We then introduce realized gamma as the ratio of the conditional

covariance to the daily realized conditional variance of Treasury security

returns. Realized gamma is a daily estimate of the sensitivity of an

individual firm’s stock price returns to realized changes in interest rates.

We calculate returns at five-minute intervals using every possible five-

minute grid point in a trading day, exploiting all available high-frequency

information as described in Zhang, Mykland and Aït-Sahalia (2005).

High-frequency data provide a consistent estimate of time-varying inter-

est rate risk, even when changes in financial institutions’ exposure are slow

moving. We carefully address well-known market microstructure concerns

associated with high-frequency financial market data in Section 2.1.1. A

feature of our realized volatility estimates is the ability to aggregate them

over time (Corsi, 2009). In practice, we can consistently estimate a measure

of longer-term interest rate risk over any horizon by averaging our daily

estimates. For example, in our empirical application described in Section 3,

we averaged the daily estimates over a period of two months.

We also propose a new statistical test of the daily residual interest

rate risk exposure of financial intermediaries. We conduct statistical
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inference on the realized gamma estimates by calculating asymptotically

valid confidence intervals using subsampling (Politis, Romano and Wolf,

1999). The essence of the subsampling method is to approximate the

sampling distribution of the daily realized gamma with the empirical

distribution generated by estimating the realized gamma on an exhaustive

set of intra-day subsamples.3 Although computationally intensive, the

method of subsampling behaves well under extremely weak, easily satisfied

assumptions.4 Our approach to statistical inference is crucial because

it is by definition impossible to know everything about each financial

intermediary’s proprietary risk management framework.

Our new method provides a time-varying measure of residual interest

rate risk exposure because it is based on financial intermediaries’ publicly-

traded equity values. As the owners of a financial intermediary, equity

investors are the ultimate bearers of its interest rate risk. Equity values

thus reflect intermediaries’ exposure to interest rates after they have

executed their interest rate risk management strategies. The correlation

of equity values with interest rates reveals market participants’ views on

the effectiveness of financial intermediaries’ hedging strategies in relation to

the changes in the interest rates that occurred. The measure is a reflection
3Our limiting concept is the length of the time interval between two stock price

observations going to zero. We provide the main theoretical results for our application
in Appendix B.

4By contrast, bootstrapping the confidence intervals would require showing the time-
series properties were preserved within samples or impose strong assumptions about the
data generating process.
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of the hedging strategy conditional on the actual changes in interest rates.

A measure of zero doesn’t necessarily mean that financial intermediaries

are fully hedged. That said, intuitively, the stock price of a financial

intermediary with fully hedged interest rate risk would be uncorrelated

with all possible changes in interest rates (Allen, 1993).

Note that we will not address the question of why financial intermedi-

aries bear interest rate risk. Importantly, we are not making any normative

statement about how much interest rate risk financial intermediaries could

or should carry. In particular, our notion of effectiveness does not imply

that intermediaries should aim for zero residual interest rate risk. Nor

does it imply that market participants think intermediaries should do so.

Rather, our measure derives from the compensation for the interest rate

risk borne by the ultimate owners of the intermediary, as in Allen (1993).

When ownership is obtained through traded equity, the equity market price

reflects that compensation.

Monitoring residual interest rate risk exposures is an important

component in analysts, policymakers, and supervisors’ evaluation of the

financial conditions of intermediaries. Interest rate risk exposures are

typically included as part of credit rating reports and investment analysis.

As part of their financial stability discussions, central bankers are attuned

to the potential effects on their decisions on financial intermediaries, e.g.,

Brainard (2022). Supervisors of financial institutions expect regular reports
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concerning interest rate risk management and exposures. Monitoring is

required because interest rates can change swiftly and significantly, with

large potential effects. The profitability of entire financial sector industries

has been threatened by interest rate exposures. For example, the life

insurance industry struggled to cope with the sharp rise in interest rates in

the late 1970s and early 1980s, when the Federal Reserve under Chairman

Volcker fought inflation (NAIC, 2013).

We apply our new method to publicly-listed U.S. life insurers during

the period from 2007 to 2022. Interest rate risk management is at the

heart of the modern life insurer business model because the duration of life

insurers’ insurance liabilities, such as life insurance policies and annuity

contracts, is typically much longer than the duration of the assets available

in the economy.5 This negative duration gap means that a decrease in

the interest rate increases the present value of a life insurer’s fixed-rate

liabilities faster than the present value of its fixed income assets, which

could lead to insolvency if left unmanaged. The same duration gap

also means that persistently low interest rates depress life insurers’ net

investment spread on new business and forces them to reinvest the proceeds

from maturing bonds into bonds paying lower coupon rates, which further

depresses their overall net investment spread and, in turn, adversely affects

their financial condition. In addition, explicit and implicit options on both
5For example, the duration of a typical life annuity is ten years, while the median

corporate bond duration is around 5 years.
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assets and liabilities contributes to life insurers’ interest rate risk. Because

the prospect of insolvency is incompatible with the sale of long-term life

and longevity insurance, state insurance regulations, or both, life insurers

must credibly manage interest rate risk.

We find that life insurer stock prices are largely uncorrelated with long-

term (10-year) Treasury interest rates. This suggests that life insurers’

interest rate risk management is effective most of the time. This finding

is comforting given some of the largest life insurers in the U.S. have been

managing interest rate risk for over a century. However, in some states of

the world, realized gamma is statistically significant, revealing that after

managing their interest rate risk—with liability driven investment, capital

structure, and derivatives—life insurers remain exposed to changes in long-

term interest rates in some states of the world.

We contrast our analysis of life insurance companies with an analysis

of publicly-listed property and casualty (P&C) insurance companies. P&C

insurers provide an ideal alternative to life insurers because the structure

of their business means that they are relatively less exposed to interest

rate risk. For example, the vast majority of P&C premiums are renewable

every year and, therefore, P&C insurers do not need to actively manage

a duration gap between their assets and insurance liabilities. Consistent

with this difference in business model, we find that life insurers are more

sensitive to changes in long-term interest rates than P&C insurers.
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We then show that a measure of the term premium—the compensation

for the risk associated with holding longer-term bonds—helps to explain

the difference between the estimated sensitivities of life insurers and P&C

insurers. We use the estimate of the term premium from the term structure

model of Adrian, Crump and Moench (2013). We control for the funding

cost of life insurers and a measure of the corporate credit return on life

insurers’ assets. Our finding likely reflects the outsized importance of

longer-term debt in life insurers’ investment portfolios. We use these results

to illustrate how our measure provides information about the impact that

rapidly changing interest rates may have on insurers.

Lastly, we show that our finding that life insurers’ interest rate risk

management is generally effective is not due to low long-term interest

rate volatility. We provide two alternative approaches to address the

potential endogeneity between realized gamma and long-term interest rate

volatility. Both approaches are based on the exogenous increase in interest

rate volatility that occurs on scheduled Federal Open Market Committee

(FOMC) meeting days.

1.1 Related literature

Our paper connects to three distinct strands of literature. First, our

method contributes to the high-frequency financial econometrics literature.

Conceptually, our method is an extension of the single-factor realized beta
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model of Andersen, Bollerslev, Diebold and Wu (2006) and Hansen, Lunde

and Voev (2014). We include a second right-hand side variable, that is

Treasury security returns, in the estimated regression specification. To

the best of our knowledge we are the first to introduce a second right-

hand side variable. Our computation of asymptotically valid standard

errors using the subsampling approach is unusual in the high frequency

financial econometrics literature because the approach is conservative and

computationally intensive. Our realized gamma estimates do not suffer

from bias due to non-synchronous trading—see, for example, Christensen,

Kinnebrock and Podolskij (2010) and Barndorff-Nielsen, Hansen, Lunde

and Shephard (2011)—since we use index data aggregated at the one-

minute frequency. Our choice of five-minute sampling frequency and

averaging immunizes our estimates from market microstructure noise

biases, as described in Section 2.1.1.

Second, our method relates to—but is distinct from—studies of interest

rate risk that measure the effects of realized changes in interest rates. These

studies differ from other interest rate risk assessments that use balance

sheet information to describe scenarios of potential effects associated with

hypothetical changes in interest rates, e.g., Möhlmann (2021). Other papers

that study actual changes in interest rates tend to focus on banks. Flannery

and James (1984) studies the correlation between bank stock prices and

interest rates using a similar regression model and weekly data. English,
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Van den Heuvel and Zakrajšek (2018) identify the response of bank stock

prices to FOMC interest rate shocks. Paul (2022) revisits the findings

of English et al. (2018) by decomposing the effect of monetary policy

surprises into changes in future expected short-term rates and changes

in term premium. Hoffmann, Langfield, Pierobon and Vuillemey (2018)

use supervisory bank balance sheet data to estimate interest rate risk and

study its determinants in the cross section. Vuillemey (2019) and Begenau,

Piazzesi and Schneider (2015) show that banks increase their exposure

to interest rate risk using derivatives. Most of these papers study low-

frequency data and, in some cases, attempt to identify interest rate shocks.

By contrast, we exploit the information in high-frequency data and we use

changes in interest rates rather than identified shocks.

Third, our paper adds to the extensive literature on risk management

of financial institutions—e.g., Froot, Scharfstein and Stein (1993); Froot

and Stein (1998). Our method is applicable to any financial intermediary.

We chose to focus on the interest rate risk of life insurers, as they have

received much less attention than, for example, banks. The theoretical

foundation for our application to life insurers comes from recent work

studying interest rate risk management at insurance companies (Foley-

Fisher, Narajabad and Verani, 2016; Verani and Yu, 2021). In these

papers, limited liability insurers manage the ex-ante risk of insolvency due

to future movement in the interest rate by choosing an optimal insurance
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price, asset portfolio, and capital structure. Our method is an ex-post

statistical test of the performance of insurers’ ex-ante interest rate risk

management strategy. As such, our analysis is closely related to empirical

work that measures the residual interest rate risk exposure of insurers

using a two-variable regression model of stock prices and low-frequency

data (Brewer III, Mondschean and Strahan, 1993; Berends, McMenamin,

Plestis and Rosen, 2013; Hartley, Paulson and Rosen, 2016; Ozdagli and

Wang, 2019; Sen, 2021; Koijen and Yogo, 2022; Huber, 2022). These

estimates are weighted averages of the underlying time-varying interest rate

risk parameter, where the weights depend on volatility that is potentially

time-varying. If the time-varying parameter is correlated with the time-

varying volatility, great care must be taken to avoid misspecifying the

errors (Hamilton, 2008). Any analysis that compares estimates across time

periods is subject to this concern. For example, we show in Appendix A

that estimates obtained through low-frequency rolling window ordinary

least squares (OLS) regressions are severely biased, inconsistent, and

potentially misleading.6 In contrast to our findings in this paper, incorrect

inference on the OLS estimates suggests that life insurers are sensitive to

any movement in long-term interest rates at almost all times in the post-

crisis period.
6To be sure, not all the papers cited in this paragraph provide estimates use rolling

windows, but all of them use low-frequency OLS. Some of the papers use stock prices
only as a motivation for subsequent analysis of insurer balance sheet measures of interest
rate risk.
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The rest of our paper is structured as follows: Section 2 sets out the

empirical framework for our estimation and explains how we construct our

standard errors using subsampling. Section 3 describes our application to

US life insurers, including institutional background and details on the data.

We summarize our main findings in section 3.3 and offer some concluding

remarks in section 4.

2 Methodology

2.1 A two-variable regression model

In this section, we introduce our new method to measure the residual

interest rate risk exposure of financial intermediaries. Let 𝑟𝑖 𝑗 𝑡 be the

continuously compounded stock return of financial intermediary 𝑖 indexed

to minute 𝑗 within day 𝑡. Let 𝑟𝑚 𝑗𝑡 be the continuously compounded return

on aggregate market 𝑚 and 𝑟𝑦 𝑗𝑡 be the continuously compounded return

on Treasury security 𝑦.

Our framework is a regression model with two right-hand side variables

using minute-by-minute financial market returns:

𝑟𝑖 𝑗 𝑡 = 𝛼𝑡 + 𝛽𝑡𝑟𝑚 𝑗𝑡 + 𝛾𝑡𝑟𝑦 𝑗𝑡 + 𝜖𝑖 𝑗 𝑡 (1)

where {𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡} are day-specific coefficients estimated using within-day
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returns. Our regression with the restriction 𝛾𝑡 = 0 is well established in

the finance literature and is referred to as the one-factor capital asset

pricing model (CAPM). In the CAPM regression, the coefficient 𝛽𝑡 is

interpreted as a dynamic measure of the comovement of individual stock

returns with aggregate market or systematic returns.7 We extend the one-

variable CAPM regression to include a second right-hand side variable, that

is Treasury security returns.8

The time-varying 𝛾𝑡 coefficient estimates the sensitivity of an individual

firm’s stock price returns to high-frequency realized changes in Treasury

security returns. As Treasury security returns are inversely dependent on

changes in interest rates, 𝛾𝑡 provides an estimate of that firm’s interest rate

sensitivity.

We label our 𝛾𝑡 estimates realized gamma because our method

can also be cast in the nonparametric framework of realized variances

and covariances (Meddahi, 2002; Barndorff-Nielsen and Shephard, 2004;

Andersen, Bollerslev and Meddahi, 2004). Our estimates of daily gammas

are based on realized daily variances and covariances after conditioning on

the aggregate market returns. We first project out aggregate stock market
7A full discussion of the extensive literature studying time-varying 𝛽𝑡 and its

determinants is beyond the scope of this paper. See Fama and French (2004) for an
overview.

8To be sure, we are not assuming that the right-hand side variables in our regression
model are orthogonal. We are estimating the general equilibrium relationship between
the three variables in our regression, which is fully consistent with the standard one-
factor CAPM and yields an unbiased estimate of 𝛾𝑡 . Other papers that adopt a similar
approach include Fama and Schwert (1977) and Flannery and James (1984). We explore
the effect of an exogenous increase in long-term Treasury rate volatility in section 3.4.
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returns from stock returns and Treasury security returns by running two

auxiliary regressions for each day 𝑡:

𝑟𝑖 𝑗 𝑡 = �̂�
1
𝑡 + 𝛽1𝑡 𝑟𝑚 𝑗𝑡 + 𝜖𝑖 𝑗 𝑡 , (2)

𝑟𝑦 𝑗𝑡 = �̂�
2
𝑡 + 𝛽2𝑡 𝑟𝑚 𝑗𝑡 + 𝜖𝑦 𝑗𝑡 . (3)

The residuals from these auxiliary regressions {𝜖𝑖 𝑗 𝑡 , 𝜖𝑦 𝑗𝑡} are, respectively,

the within-day conditional stock returns and Treasury security returns.

The daily realized covariance of each financial intermediary’s conditional

stock returns and Treasury security conditional returns is given by:

𝜈𝑖,𝑦,𝑡 =
∑︁
𝑗

𝜖𝑖 𝑗 𝑡 · 𝜖𝑦 𝑗𝑡 .

And the daily realized variance of conditional Treasury security returns is

given by:

𝜈𝑦,𝑡 =
∑︁
𝑗

𝜖2𝑦 𝑗𝑡 .

So we can define realized gamma as the ratio of the conditional covariance

to the daily realized conditional variance of Treasury security returns:

𝛾𝑡 =
𝜈𝑖,𝑦,𝑡

𝜈𝑦,𝑡
. (4)

The 𝛾𝑡 estimates by equation 1 and equation 4 are identical by what
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is commonly-known as the Frisch-Waugh-Lovell Theorem (Davidson and

MacKinnon, 1993, Section 1.4). However, care must be taken with

interpretation. The simple regression shown in equation 1 yields a

consistent estimate of the ex-post realized gamma coefficient. That said,

obtaining asymptotically valid standard errors is not a simple process, as

we will describe in Section 2.2.

2.1.1 Addressing market microstructure noise

Controlling for market microstructure noise that is prevalent in high

frequency financial market data is an important issue (Aït-Sahalia and

Yu, 2009). Microstructure noise naturally arises from a variety of features

built in to financial market trading, including prices bouncing from bids

to asks, variation in the size of trades, adjustment to new information

contained in prices, order flow dynamics, and inventory management.

Following Aït-Sahalia and Mykland (2009), we address the presence of

market microstructure noise without discarding observations from our

samples.

We employ two well-established techniques to mitigate concerns that

market microstructure noise is clouding our ability to construct estimators

and draw inference from high-frequency data. First, we calculate returns at

five-minute intervals as their use as a benchmark for estimators generally

outperforms all alternatives (Liu, Patton and Sheppard, 2015). We use
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every possible five-minute grid point in a trading day to exploit all available

high-frequency information given the data structure as described in Zhang

et al. (2005).9 Second, we filter all of our returns time series through

AR(1) processes estimated separately for each day. That is, we take the

raw returns 𝑟𝑘 𝑗𝑡 for 𝑘 ∈ {𝑖, 𝑦, 𝑚} and estimate 𝑟𝑘, 𝑗 ,𝑡 = 𝜌 + 𝜙𝑟𝑘, 𝑗−1,𝑡 + 𝜀𝑘, 𝑗 ,𝑡 for

each day 𝑡. We then use the residuals 𝜀𝑘, 𝑗 ,𝑡 as our returns time series that

has filtered out market microstructure noise.

2.2 Statistical inference

A key principle for our new methodology is to impose minimal assumptions

about the data generating process. This principle underpins our use

of high-frequency data to estimate nonparametrically the time-varying

correlation between interest rates and financial intermediaries’ stock prices.

Similarly, we follow this principle when we consider what standard errors

are appropriate for valid inference. We derive asymptotically valid standard

errors without imposing undue structure on the time series processes. Our

choice of standard errors is a crucial part of our approach to estimate

interest rate risk, as the data generating process underpinning our realized

gamma estimates is nonstandard. For example, we use rolling five-minute

windows to construct our time series of returns.
9Our approach is identical to the method commonly referred to as “subsampling”

in high-frequency financial econometrics. We avoid using the term here to prevent
confusion with the concept of “subsampling” that we use to construct asymptotically
valid standard errors.
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We adopt the subsampling methodology as it is a valid technique

in extremely general cases (Politis et al., 1999).10 The basic idea of

subsampling in a time series context is to approximate the sampling

distribution using all possible subsets of the time series. Theorem 4.3.1 from

Politis et al. (1999), which we reproduce in Appendix B for completeness,

shows that we can derive asymptotically valid confidence intervals for

the daily estimator 𝛾𝑡 . In addition, we can draw asymptotically valid

inference about the true 𝛾𝑡 by exploiting the familiar duality between

the construction of confidence intervals for 𝛾𝑡 and the construction of

hypothesis tests about 𝛾𝑡 . We can test the null hypothesis that our estimate

of the daily 𝛾𝑡 is statistically different from 0. That is, under the null,

financial intermediaries are hedged against interest rate risk as their stock

prices are not sensitive to movements in interest rates.

Our algorithm for hypothesis testing uses within-day observations to

construct subsamples. We follow Politis et al. (1999) and evaluate statistics

on an exhaustive set of subsamples of size 𝑏 < 𝑛 that are created from the

original daily sample of size 𝑛. We estimate the distribution of this statistic

after a suitable normalization for each day in our sample. Note that our

limiting concept is that the number of observations in a day approaches

infinity. To be clear, each subsample contains consecutive observations from
10Alternative methodologies based on the bootstrap technique could be devised, but

they typically require additional assumptions, such as a finite fourth moment of the
model residuals (Paparoditis and Politis, 2009).

17



the original time series sample. Therefore, each subsample of size 𝑏 is drawn

without replacement from the true data generating process. We calculate

a confidence interval for each of the daily 𝛾𝑡 using subsampling following

Politis et al. (1999) under the assumption that the errors are asymptotically

stationary. Asymptotic stationarity is a weak condition that means, for

example, the errors could follow an 𝐴𝑅(1) process with autocorrelation

parameter strictly less than 1 and heteroskedastic innovations. The essence

of the subsampling method is to approximate the sampling distribution of

the (normalized) 𝛾𝑡 estimate with the empirical distribution generated by

its subsample counterpart.

As we have a large daily sample size (roughly speaking, 𝑛 =

390 observations per day), the choice of subsample size (𝑏) should not have

a large effect on the empirical distribution of our statistic. Nevertheless,

we need to choose the size of our subsamples. We follow the algorithm

proposed by Politis et al. (1999) in section 9.3.3. Let 𝑏𝑡 be the subsample

size for day 𝑡, which yields a confidence interval {𝐼𝑏𝑡 ,𝑙𝑜𝑤, 𝐼𝑏𝑡 ,ℎ𝑖𝑔ℎ}. We

construct a discrete grid of possible values 𝑏𝑡𝑠 ∈ {𝑏𝑡
𝑠𝑚𝑎𝑙𝑙

, ..., 𝑏𝑡
𝑙𝑎𝑟𝑔𝑒

}. For

each subsample size 𝑏𝑡𝑠 we consider a perturbation of small integer 𝑘 around

the subsample size and calculate a measure of variation in the confidence

interval:

𝑉𝐼𝑏𝑡𝑠 ≡ var
(
𝐼𝑏𝑡𝑠−𝑘,𝑙𝑜𝑤, ..., 𝐼𝑏𝑡𝑠+𝑘,𝑙𝑜𝑤

)
+ var

(
𝐼𝑏𝑡𝑠−𝑘,ℎ𝑖𝑔ℎ, ..., 𝐼𝑏𝑡𝑠+𝑘,ℎ𝑖𝑔ℎ

)
.
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Finally, we pick the value of 𝑏 that delivers stable confidence intervals for

the most number of days in the entire sample:

𝑏 = argmax𝑏
𝑇∑︁
𝑡=0

𝟙(𝑏𝑡∗ = 𝑏) where 𝑏𝑡∗ = argmin𝑏𝑡𝑠𝑉𝐼𝑏𝑡𝑠 .

Having determined the ‘optimal’ subsample size, we construct the

empirical distribution of the normalized 𝛾𝑡 estimate for each day 𝑡. We

use empirical distributions to obtain confidence intervals, which allow us

to make inference about the statistical significance of each 𝛾𝑡 . With our

new methodology in hand, we can turn to a specific application and data.

3 Application to U.S. life insurers

3.1 Institutional background

Life insurers play a major role in the financial system, holding $6 trillion

in total assets in their general accounts, of which roughly $3 trillion are in

corporate and foreign fixed income securities (Federal Reserve release Z.1

table L.116.g). Their overall business model consists of earning a spread

between the yield they owe on their insurance liabilities and the yield they

earn on the assets backing those liabilities. Life insurers write liabilities

that are traditionally long-term, illiquid, and make fixed payments, such

as fixed annuities. Life insurers tend to invest their premiums primarily
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in fixed rate corporate debt, in an effort to match their asset and liability

cash flows and illiquidity profile and to offer a competitive return to policy

holders.

Like other financial intermediaries, life insurers have multiple sources of

exposure to interest rate risk. A key underlying reason for their exposure is

that the duration of insurance liabilities is typically much longer than the

duration of assets available in the economy. In the U.S., the typical duration

of life insurance liabilities is 15–20 years (Huber, 2022). By contrast, in

most countries, long-term fixed coupon bonds with more than two-year

maturity do not exist (Gajek and Ostaszewski, 2004). Even in the U.S.,

which has the largest corporate bond market in the world, the supply of

long-duration corporate bonds paying fixed interest rates is considerably

smaller than the size of the life insurance industry (Verani and Yu, 2021).

This means that, in practice, it is difficult for life insurers to hedge interest

rate risk by investing in assets that have the same duration and greater

cash flow variability than their insurance liabilities i.e., they cannot directly

implement the classical immunization strategy of Redington (1952).

Convexity—the effect of changing interest rates on the duration—of life

insurer assets and/or liabilities also contributes to interest rate risk. One

well-known source of convexity stems from options on financial contracts.

For life insurers, the option for corporate bond issuers to call their bonds

creates convexity on the asset side of their balance sheet. Likewise,
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policyholders may have the option of surrendering their life insurance

products–perhaps for some cost–that creates convexity on the liability side

of the balance sheet. The combination of these options creates a short

straddle position for investors in the life insurer, which means they suffer

when volatility is high (Babbel and Stricker, 1987).11

A natural way for life insurers to manage their interest rate risk consists

of choosing a price for their insurance liabilities, an asset portfolio to back

their insurance liabilities, and a capital structure to prevent insolvency

along different paths for interest rates (Verani and Yu, 2021). For example,

life insurers can hedge interest rate risk by charging a markup on the

actuarially fair cost of their insurance products. The present value of the

markup adds to the insurer’s ‘net worth’. Net worth allows the insurer to

close its duration gap by financing bonds whose present value is greater

than the present value of its insurance liabilities. Or, put differently, net

worth acts as precautionary savings and helps cushion the effect of interest

rate changes that disproportionately affect the value of the insurance

liabilities.12

Large and sophisticated life insurers also manage interest rate risk by

adding net-positive duration to their balance sheets synthetically using

derivatives (Sen, 2021; Verani and Yu, 2021) and nontraditional lines of
11Briys and de Varenne (1997) provide an alternative formulation for the investor

straddle position in which insurance liabilities are more convex than assets.
12Net worth is not to be confused with what the industry calls reserves, which is the

value of insurance liabilities.
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business (Foley-Fisher et al., 2016; Foley-Fisher, Narajabad and Verani,

2020), which amounts to using leverage instead of net worth to close the

duration gap. For example, life insurers can add positive duration to their

balance sheet by entering into a long-term fixed-for-float interest rate swaps

or by financing long-term fixed interest rate assets with nontraditional

liabilities such as overnight securities lending cash collateral (Gissler, Foley-

Fisher and Verani, 2019; Foley-Fisher et al., 2016) and funding agreement-

backed short-term funding (Foley-Fisher et al., 2020). All these interest

rate hedging strategies amount to closing the insurer’s natural negative

duration gap by either directly or synthetically financing fixed-maturity

assets with short-term floating rate debt.

Nevertheless, insurers typically carry residual interest rate risk after

they have implemented their hedging strategies. Investors in the insurers—

either the policyholders in the case of mutual insurers or shareholders in

the case of publicly-listed insurers—provide additional risk-bearing capital

and receive compensation for bearing the insurer’s residual interest rate

risk (Allen, 1993). When investment takes place through traded equity,

the market price for the equity reflects the interest rate risk compensation.

One real-world example when the residual interest rate risk carried

by life insurers was realized occurred in the early 1980s. At that time,

the Federal Reserve sharply increased short-term interest rates amid

persistently high inflation. Life insurers’ financial condition deteriorated as
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policyholders surrendered their claims or took out policy loans in search of

higher interest rates on alternative saving vehicles (Briys and de Varenne,

2001). Life insurers responded by rewriting existing business at a loss

and selling new products that offered higher-than-current long-term rates

(negative spreads) (NAIC, 2013). While locking in huge losses—eroding

their net worth—they avoided even greater losses they would have incurred

had they sold their fixed income assets at far-below costs given the rise

in current rates. The surge in short-term interest rates occurred after a

relatively long period of low interest rate volatility, making these sharp

rises largely unexpected. The significance of the episode is underscored

by subsequent efforts to develop new tools for managing interest rate risk

(Doffou, 2005).

Adverse scenarios such as the early 1980s create a need for researchers

and policymakers to monitor and assess the effects of rising interest rates

on life insurers. However, they do not have access to the complete set

of balance sheet information needed to precisely identify the effectiveness

of life insurers’ interest risk management and their residual interest rate

risk. For example, information about the interest rate sensitivity of life

insurance liabilities is difficult to gauge, although it is easier in some non-

U.S. jurisdictions (Huber, 2022; Möhlmann, 2021; Kirti, 2017; Domanski,

Shin and Sushko, 2017). Furthermore, it is hard to incorporate balance

sheet information about the interest rate sensitivity of derivative positions,
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off-balance sheet liabilities (such as those in offshore captive reinsurers),

and nontraditional liabilities.

To overcome this problem, researchers turned to analyzing the

sensitivity of life insurer stock returns to changes in long-term interest

rates. An insurer’s equity valuations reflect the market price for its

residual interest rate risk, after it has implemented its hedging strategies.

That is, the ex-post effectiveness of life insurers’ management of ex-ante

interest rate risk.13 To the best of our knowledge, this approach was

first adopted by Brewer III et al. (1993). To assess the dynamics of

interest rate risk exposure, some papers run OLS on rolling windows of

stock returns e.g., Hartley et al. (2016). Although conceptually valid,

the OLS implementation can lead to biased estimates in the presence of

heteroskedasticity.14 In Appendix A, we show the bias is extremely large

by imposing some structure on the data generating processes. We will now

apply our preferred methodology described in Section 2 to obtain consistent

estimates without imposing such structure.
13Here, again, the term ‘effectiveness’ should not be taken to imply that investors think

insurers should target any particular level of interest rate risk. Rather, it’s investors’
assessment of the effect that actual interest rate changes had on the net worth of the
insurer.

14Brewer III, Carson, Elyasiani, Mansur and Scott (2007) recognised this concern and
allowed for time-varying volatility in a GARCH-M process.
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3.2 Data

All the price data for our empirical application to life insurers come

from Refinitiv. The underlying data are timed to the microsecond and

recorded from data feeds covering both over-the-counter and exchange

traded instruments on more than 500 trading venues and third parties. We

use a preprocessed version of the underlying data aggregated by Refinitiv to

a minutely frequency using the last trade during each minute. We construct

the data so as to follow the previous tick method, that is, if there are no

transactions during a specific minute, the last transaction is used.

The dataset identifier for each dataseries typically combines a ticker

with a code indicating the primary trading market. For example, MetLife’s

identifier is MET.N as it trades on the New York Stock Exchange. The

list of the individual insurer identifiers and their mapping to the life and

P&C insurers used in our analysis is provided in Table 1. Column 2 of

Table 1 shows the insurers included in each index. Our list of publicly-listed

life insurers almost completely overlaps with the list of “publicly traded

U.S. variable annuity insurers” used by Koijen and Yogo (2022). This is

not surprising because virtually all large listed life insurers offer variable

annuities contracts at some point in the sample period.15 In addition,

our analysis uses Standard and Poor’s S&P500 index as our measure of the
15As we will discuss in Section 3.4, this means that it is not possible to attribute the

residual interest rate risk exposure to variable annuities.
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aggregate market. The identifier for the index is .SPX. We also use Refinitiv

evaluated prices for 10-year Treasury securities. The identifier for the series

is US10YT=RRPS. Evaluated prices contain information from actual trades,

quotes, and other sources within a model-based methodology.

Table 1: Mapping insurance groups to identifiers. This table shows
the insurance groups that we use in our empirical application, with their
respective NAIC Group codes, and identifiers.

Name Code Life/P&C Identifier Ticker Notes

Alleghany Group 501 P&C Y.N Y
American Financial Group 84 P&C AFG.N AFG
American Intl Group, Inc. 12 Life/P&C AIG.N AIG
Assurant, Inc. 19 Life/P&C AIZ.N AIZ
The Allstate Corporation 8 Life/P&C ALL.N/BK.N ALL/BX Identifier change for Life in 2021
Ameriprise Financial, Inc. 4 Life AMP.N AMP
American National Financial Group 408 Life ANAT.OQ ANAT
Apollo Global Management, Inc. 4734 Life ATH.N/APO.N ATH/APO Identifier change in 2022
Brighthouse Financial, Inc. 4932 Life BHF.OQ BHF
Berkshire Hathaway Inc. 31 P&C BRKb.N BRK.B
Chubb Ltd. 626 P&C ACE.N/CB.N ACE/CB Identifier change in 2016
Cigna Health Group 901 Life CI.N CI
Cincinnati Financial Corporation 244 P&C CINF.OQ CINF
CNA Financial Corporation 218 P&C CNA.N CNA
CNO Financial Group 233 Life CNO.N CNO
Erie Insurance Group 213 P&C ERIE.OQ
Equitable Holdings, Inc. 4965 Life EQH.N EQH
FBL Financial Group Inc. 513 Life FFG.N FFG Ceased trading in 2021
Fidelity and Guaranty Life 4731 Life FGL.N FGL Ceased trading in 2017
Fidelity National Financial, Inc. 670 Life FNF.N FNF
Genworth Financial, Inc. 4011 Life GNW.N GNW
Hanover Insurance Group, Inc. 88 P&C THG.N THG
The Hartford Fin. Svcs Group, Inc. 91 Life/P&C HIG.N HIG Remove identifier from Life in 2018
Horace Mann Group 300 Life HMN.N HMN
Kansas City Life Insurance Group 588 Life KCLI.OQ KCLI Delisted in 2015
Kemper Corporation Group 215 P&C KMPR.N KMPR
Lincoln National Corporation 20 Life LNC.N LNC
Mercury General Group 660 P&C MCY.N MCY
Markel Corporation Group 785 P&C MKL.N MKL
MetLife, Inc. 241 Life MET.N MET
Manulife Financial Corporation 904 Life MFC.TO MFC
Nationwide Corporation Group 140 Life NFS.N NFS Ceased trading in 2008
The Phoenix Companies, Inc. 403 Life PNX.N PNX Ceased trading in 2016
Primerica Group 4750 Life PRI.N PRI
Principal Financial Group, Inc. 332 Life PFG.OQ PFG
Protective Life Corporation 458 Life PL.N PL Ceased trading in 2015
The Progressive Corporation 155 P&C PGR.N PGR
Prudential Financial, Inc. 304 Life PRU.N PRU
Selective Insurance Group 88 P&C THG.N THG
Symetra Financial Corp. 4855 Life SYA.N SYA Ceased trading in 2016
The Travelers Companies, Inc. Group 3548 P&C TRV.N TRV
Voya Financial, Inc. 4832 Life VOYA.N VOYA
W. R. Berkley Corporation 98 P&C BER.N/WRB.N BER/WRB Identifier change in 2008

We use minutely data for each trading day beginning at 9:30am
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through 4pm.16 Except for 9:30am, we use closing prices recorded for

each minute. For 9:30am, we use the opening price of 9:31am to avoid

concerns about jumps following overnight information and trading. We

calculate five-minute log returns of all time series using every possible

five-minute grid point in a trading day. That is, we calculate the

returns 𝑙𝑛(𝑝𝑖, 𝑗 ,𝑡) − 𝑙𝑛(𝑝𝑖, 𝑗−5,𝑡) for each day 𝑡, data series 𝑖, and all 𝑗 ∈

{9.35𝑎𝑚, 9.36𝑎𝑚, · · · , 3.59𝑝𝑚, 4.00𝑝𝑚}.

We construct high-frequency price indexes separately for life insurers

and P&C insurers, weighting each individual insurer’s intraday market

price by its end-of-day market capitalization. We obtain daily data on

market capitalization from the Center for Research in Security Prices

hosted by Wharton Research Data Services. Figure 1 shows the life insurer

index as a red solid line and the P&C insurer index as a dotted blue

line. The dotted blue line lies above the red solid line as P&C insurers

have generally outperformed life insurers in the post-crisis low interest rate

environment.

Table 2 shows summary statistics for the high-frequency data used in

our analysis. Column 1 shows that the first day that data are available

is different for each of our variables. The S&P500 Index is earliest

available, while our high frequency data on long-term Treasury bond prices

(‘US10YT’) begin only in 2007. Our indexes of large life and P&C insurers
16We exclude holidays, weekends, emergency closures, and partial trading days.
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Figure 1: Insurer price indexes. Each line is a weighted average
high-frequency price for large publicly-traded insurers listed in Table 1.
The weights for each series are the daily market capitalization of insurers.
Source: Authors’ calculations based on data from Refinitiv and the Center
for Research in Security Prices.
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stock prices also begin in 2007. By construction, our sample ends on

October 31, 2022. In addition to the first date available, we report the

number of days, and the total number of minutely five-minute returns in our

data. We also report that there are no zero returns in our data, alleviating

concerns about downward bias in our estimates due to zero returns (Bandi,

Kolokolov, Pirino and Renò, 2020; Kolokolov and Renò, 2023). Across

these returns, we report the mean, median, standard deviation, percentiles,

and higher-order moments for each time series. Life insurers’ returns have

a higher standard deviation than P&C insurers, but the kurtosis of life

insurers’ returns is far lower.

Table 2: Summary statistics. For each returns series in our sample,
the table shows the first observation date, the number of days, the number
of five-minute returns, the number of returns equal to zero, as well as
the mean, median, standard deviation, percentiles, skewness, and kurtosis.
The statistics reported in columns 6 through 10 are multiplied by 1𝑒+4 for
legibility. Source: Authors’ calculations based on data from Refinitiv and
the Center for Research in Security Prices.

Series First date No. days No. obs. #Zeroes Mean Median Std. dev. p25 p75 Skew. Kurt.

S&P500 2000-01-03 5,768 2,218,825 0 -0.01 0.05 10.74 -4.06 4.11 -0.04 38.74
US10YT 2007-04-10 3,961 1,524,682 0 0.01 0.00 3.91 -1.67 1.70 0.99 80.66
Life 2007-01-03 3,996 1,533,761 0 -0.01 0.06 16.55 -5.76 5.79 0.44 35.25
P&C 2007-01-03 3,996 1,533,761 0 0.02 0.03 10.44 -4.00 4.02 2.06 147.25

3.3 Results

In this section, we apply the methodology laid out in Section 2 to the data

described in the previous section. Panel A of Figure 2 shows the daily
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point estimate of realized gamma for life insurers, and Panel B of the same

figure shows the daily point estimate of realized gamma for P&C insurers.

Both panels exhibit volatility, which is a well-known feature of time-varying

coefficients estimated using realized variances and covariances (Hansen et

al., 2014). Nevertheless, life insurers’ realized gamma evidently has a higher

level of volatility than P&C insurers’.

Figure 2: Daily realized gammas. The panels show daily realized
gammas for life insurers and P&C insurers from 2007 through to the end
of 2022. Source: Authors’ calculations based on data from Refinitiv and
the Center for Research in Security Prices.

We obtain confidence intervals from the empirical distributions, which

are estimated for each day. Table 3 shows the results from applying the

algorithm described in subsection 2.2 to determine the block size. While

any block size satisfying the conditions of Theorem B.1 is valid, the ideal
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Table 3: Optimizing block size. Each of columns 2-4 shows the number
of days on which the block size (column 1) produces the most stable,
i.e. least variable, confidence intervals. The measures of variation used
in columns 2 and 4 is the standard deviation, while columns 3 and 5
use the difference between the minimum and the maximum values. The
row with the highest count of days reveals the ideal block size for life
insurers (columns 2-3) and P&C insurers (columns 4-5). Source: Authors’
calculations based on data from Refinitiv and the Center for Research in
Security Prices.

Block Life P&C
size (%) Std. dev. Min-max Std. dev. Min-max

15 481 475 519 513
20 419 418 381 379
25 992 1000 988 995
30 676 673 702 700
35 597 594 618 615
40 472 480 452 454
45 418 415 395 399

block size is the one that produces the most stable i.e., least variable,

confidence intervals given a small perturbation in the size of the block.17

Each of columns 2-4 shows the number of days on which the block size

(column 1) produces the most stable confidence intervals. The measure of

variation used in columns 2 and 4 is the standard deviation, while columns 3

and 5 use the difference between the minimum and the maximum values.

The row with the highest count of days reveals the ideal block size for

life insurers (columns 2-3) and P&C insurers (columns 4-5). For both life

insurers and P&C insurers, the optimal block size is 25 percent of the daily
17Note that there is no reason to expect variation across grid points to follow a

monotonic function or have a global optimum (Politis et al., 1999).
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observations, corresponding to about 100 consecutive observations in each

block and about 300 points in the empirical distribution. These relatively

large values alleviate concerns about the power of the test.

We average our daily estimates using a rolling window of two months, to

obtain a consistent estimate of interest rate risk over a longer horizon.18 We

construct smooth series for both the point estimates of realized gammas and

the confidence intervals. Panels A and B in Figure 3 show the smoothed

time series. The red horizontal lines represent the sample means of the

respective series.

The smoothed time series reveal that realized gamma for life insurers is

statistically significant on only 1,261 days, equivalent to roughly 32 percent

of the sample. Realized gamma is always negative whenever it is

statistically significant, which means that life insurers would benefit from

higher long-term interest rates. For the majority of our sample, life insurer

stock prices are uncorrelated with long-term interest rates. This suggests

that life insurers’ interest rate risk management is effective most of the

time. These results should not be interpreted as a normative assessment

of life insurers’ interest rate risk management, neither by us nor by equity

market participants. The measure is a reflection of how actual changes in

interest rates affected—or did not affect—equity investors in life insurers,

who expect compensation for bearing interest rate risk.
18A feature of our realized volatility estimates is the ability to aggregate them over

time (Corsi, 2009).
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Figure 3: Smoothed daily realized gammas. The panels show daily
realized gammas averaged using a rolling window of two months for life
insurers and P&C insurers from 2007 through to the end of 2022. The
shaded region in both panels represents the 90 percent confidence intervals
for each daily estimate. The underlying data are shown in Figure 2. The
red horizontal lines represent the sample means of the respective series.
A negative realized gamma means that insurers would benefit from higher
long-term interest rates. Source: Authors’ calculations based on data from
Refinitiv and the Center for Research in Security Prices.
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The time series also reveal that life insurers are more sensitive to interest

rate changes than P&C insurers. In contrast to life insurers, realized

gamma for P&C insurers is significant on only 705 days (about 18 percent

of the sample). Like life insurers, realized gamma for P&C insurers is

always negative whenever it is statistically significant. This finding could

be interpreted as evidence that P&C insurers carry less residual interest

rate risk, or as evidence that life insurers are exposed to different kinds of

interest rate risk. In the next section, we offer some support for the latter

interpretation by analyzing individual components of long-term interest

rates.

3.4 Analysis

3.4.1 When is life insurer hedging not effective?

In this section, we study macroeconomic variables during periods when

realized gamma is statistically significant. Our findings help to explain why

life insurers’ realized gamma is more often statistically significant that P&C

insurers’ realized gamma. While we offer an interpretation of our findings,

we do not claim causal identification, as we recognize that long-term yields

are a general equilibrium outcome of supply and demand (Schneider, 2022).

Life insurers’ interest rate sensitivity is potentially endogenous to their

demand for compensation to hold longer-term debt and, as we noted earlier,
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life insurers are important investors in the long-term debt market. As

many macroeconomic variables are unavailable at intraday frequencies, all

the analysis in this section is conducted at a daily frequency. In an ideal

empirical experiment, we would use intraday data to analyze the force(s)

behind the results described in the previous section. However, we do not

know of any high-frequency measures of the variables described below.

We focus on three key variables based on Verani and Yu (2021), who

showed that the relative cost of hedging interest rate risk is determined by

the long-term investment grade bond spread relative to life insurers’ cost

of funding. As measures of the return on life insurers’ long-term assets, we

use the term premium and Moody’s Baa-Aaa seasoned corporate spread.19

We use the term structure model of Adrian et al. (2013) to decompose long-

term yields and obtain an estimate of the term premium. While the term

premium contributes to the slope of the yield curve, it is more specifically

the component that compensates investors for holding longer-term debt

instead of rolling over short-term debt. In addition to these measures of

asset returns, we use the ICE BoA Single-A U.S. corporate index option-

adjusted spread as a proxy for life insurers’ average cost of funding because

life insurers are rated around A. Summary statistics for all the variables
19The corporate bonds used to construct this spread all have at least 20 years of

maturity. The yield on Aaa-rated corporate bonds with at least 20 years of maturity is
a quasi-risk free benchmark. Under state insurance regulation, corporate bonds rated
by Moody’s to be Baa or higher are designated as NAIC 1 and uniformly attract the
lowest statutory risk-based capital charge.
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used in this analysis are provided in Appendix C.

We construct a binary variable that takes the value 1 if the estimated

realized gamma (𝛾𝑖𝑡) is statistically significant on day 𝑡 for insurer type

𝑖 ∈ {Life, P&C}, and takes the value 0 otherwise. We then estimate a

linear probability model using as independent variables the term premium

(𝑇𝑃𝑡) estimates from Adrian et al. (2013), the Moody’s Baa-Aaa seasoned

corporate spread (𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡), and a measure of the funding cost of life

insurance companies (𝐹𝐶𝑡) that is the ICE BoA Single-A U.S. corporate

index option-adjusted spread. In more technical terms, we estimate:

𝑃(𝟙(𝛾𝑖𝑡 < 0) |𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡) = 𝛼𝑖 + 𝛽1𝑖 𝑇𝑃𝑡 + 𝛽2𝑖 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 + 𝛽3𝑖 𝐹𝐶𝑡

where 𝑃(𝟙(𝛾𝑖𝑡 < 0) |𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡) is the predicted probability that

𝛾𝑖𝑡 < 0 given 𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡 , and a linear functional form.

The results are shown in Table 4 where we report the coefficient

estimates and standard errors in parentheses. Column 1 shows the bivariate

relationship between the term premium and the statistical significance of

realized gamma for life insurers. Columns 2-4 provide the main result

under a range of standard error estimates, as indicated at the bottom of

the table. HC are heteroskedasticity consistent standard errors, HAC are

heteroscedasticity and autocorrelation consistent standard errors, and NW

are Newey-West standard errors. The dependent variable in column 5 is a
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binary variable for statistical significance of P&C insurers’ realized gamma.

This column acts as a placebo test of the main result for life insurers: The

key variables we focus on for life insurers are not statistically important for

P&C insurers, consistent with our prior expectations.

Noting again that the results are not causal, the estimates nevertheless

suggest that there is a strong economic relationship between the variables,

in addition to the statistical significance indicated in the table. We use

as a benchmark for the economic effects the 32 percent unconditional

probability that realized gamma for life insurers is statistically significant

(see Table 6 in Appendix C). A one standard deviation increase in the

term premium, which compensates investors for holding longer-term debt,

reduces the probability that realized gamma for life insurers is statistically

significant by about 17 percentage points—equivalent to about half of

the unconditional probability that realized gamma for life insurers is

statistically significant. A one standard deviation increase in Moody’s Baa-

Aaa seasoned corporate spread reduces the probability that realized gamma

for life insurers is statistically significant by about 24 percentage points.

And a one standard deviation increase in the ICE BoA Single-A U.S.

corporate index option-adjusted spread raises the probability that realized

gamma for life insurers is statistically significant by about 28 percentage

points.

Our analysis provides support for the view that a flattening yield curve
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can drive realized gamma below zero. This can be seen, for example,

around September 2019 when short-term interest rates rose and the 10-

year Treasury yield fell. Similarly, our findings chime with the broad

consensus that an upward shift of the entire yield curve is generally good for

life insurers. For example, realized gamma remained statistically close to

zero during the rapid rise in short-term interest rates that occurred as the

Federal Reserve tightened monetary policy in 2022. Our measure suggests

that market participants focused on the positive effect on life insurers’

profitability from rising long-term interest rates and widening spreads

on long-term investment grade bonds. In summary, our realized gamma

measure of stock price sensitivity to long-term interest rates serves as a

useful barometer for market sentiment about the effectiveness of insurers’

interest rate risk management.

3.4.2 Is realized gamma low due to interest rate volatility?

Column 6 of Table 4 shows that the daily realized volatility of 10-year

Treasury security returns is not correlated with the statistical significance

of realized gamma. This finding should be intuitive, as we are estimating

realized gamma conditional on intraday 10-year Treasury security returns,

but is important to emphasize: It means life insurers’ interest rate risk

management is generally effective not as a consequence of generally low

interest rate volatility. In this section, we provide further evidence for this
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key result.

We provide additional tests as we recognize the potential endogeneity

of long-term interest rate volatility and realized gamma. Life insurers

are important investors in the long-term debt market, as we noted above.

Their willingness to lend at long terms may simultaneously affect their own

sensitivity to long-term interest rates and long-term interest rate volatility.

We address the potential endogeneity with a source of plausibly exogenous

variation in long-term interest rate volatility.

Scheduled Federal Open Market Committee (FOMC) meeting days are

a well-known source of volatility in interest rates, that is sometimes used as

a exogenous source of variation (Rigobon and Sack, 2004; Foley-Fisher and

Guimaraes, 2013).20 FOMC meeting days are exogenous to the supply-side

variables that give rise to endogeneity concern in our setting. We exploit

this source of exogenous variation in two ways. First, we use scheduled

FOMC meeting days as an instrumental variable (IV) to obtain exogenous

variation in long-term interest rate volatility. Second, we test the difference

in means between realized gamma on scheduled FOMC meeting days and

on other days when long-term interest rate volatility is lower.

Our first test using an IV is reported in columns 7 and 8 of Table 4,

where we show the results from estimating a two-stage least squares
20Note that monetary policy shocks are the root cause of the exogenous increase

in interest rate volatility, but we do not need to identify the size of those shocks to
implement our tests.
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regression specification. The IV for the endogenous interest rate volatility

variable (𝜎10𝑦𝑡
𝑡 ) is a dummy variable (𝐹𝑂𝑀𝐶𝑡) that takes the value 1 on

days when the FOMC holds a scheduled meeting and the value 0 otherwise.

The first stage, reported in column 7, shows that the FOMC variable is a

strong instrument for 𝜎10𝑦𝑡
𝑡 . The coefficient estimate is highly statistically

significant and positive, consistent with rising interest rate volatility on

days with scheduled FOMC meetings. The F-statistic for the first stage

regression is 277.4, indicating a strong IV. The second stage, which includes

the fitted values from the first stage as a right-hand side variable to replace

𝜎
10𝑦𝑡
𝑡 , is reported in column 8. The coefficient on long-term interest rate

volatility remains statistically insignificant.

Our second test addresses two limitations of our IV approach: (1)

other right-hand side variables in our specification may be invalid as

instruments in the first stage, and (2) our left-hand side variable is a dummy

variable for the statistical significance of realized gamma. We focus on the

statistical property of the average difference in realized gammas between

high-volatility days when the FOMC has its scheduled meetings and low-

volatility days just before the FOMC meetings. Specifically, in our data

sample we have 125 FOMC meeting days from May 2007 to December

2022. We pair these days with two alternative low-volatility samples: (1)

the days that are one day before the scheduled FOMC meetings, and (2)

the days that are one week before the scheduled FOMC meetings. Our null
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hypothesis (𝐻0) is that the average difference between the paired high-

volatility realized gammas and low volatility realized gammas is zero.21

We implement this test using the sub-sampling approach, which does

not require making strong assumptions about the unknown distribution

of realized gammas or estimating the sample mean variances. All that

is required to obtain an asymptotically valid test is that the sampling

distribution of the difference in paired realized gammas converges to some

unknown distribution and that each pair of realized gammas is independent

and identically distributed. The former is an extremely weak condition and

the latter is natural as we estimate realized gamma using the ratio of daily

realized covariances.

The results are reported in Table 5. Columns 1 and 2 show the

99-percent confidence intervals obtained by sub-sampling for the average

difference in paired realized gammas for life insurers and P&C insurers,

respectively. The test rejects 𝐻0 when the confidence intervals do not

contain zero. The first row of the table shows the results when the FOMC

meeting days are paired with one-day earlier days. The second row of

the table shows the results from pairing FOMC meeting days with one-

week earlier days. In both rows, the confidence intervals contain zero

and we cannot reject the null hypothesis that the paired realized gammas

are the same. For comparison, column 3 reports the confidence intervals
21In addition to calculating the paired difference, we also tested the difference between

the average realized gamma on scheduled FOMC meeting days and non-meeting days.
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from testing the difference in 10-year Treasury security realized volatility

between paired days. Column 3 shows that there was a statistically

significant increase in 𝜎10𝑦𝑡
𝑡 , as should be expected.

Table 5: Comparing realized gammas on days with high and low
interest rate volatility. We test the statistical significance of the average
difference in realized gammas between high-volatility days when the FOMC
has its scheduled meetings and low-volatility days just before the FOMC
meetings. Column 1 reports the test of life insurer gammas. Column 2
reports the test of P&C insurer gammas. Column 3 reports the test of daily
realized volatility of 10-year Treasury security returns, multiplied by 1𝑒 + 4
for legibility. The first row pairs the scheduled FOMC meeting days with
one-day earlier days. The second row pairs the scheduled FOMC meeting
days with one-week earlier days. The sub-sampled confidence intervals are
calculated using 10,000 combinations of 15 paired dates. Source: Authors’
calculations based on data from Refinitiv, the Center for Research in
Security Prices and the St Louis Fed’s FRASER database.

99% confidence interval

Life insurers P&C insurers 10yr Treasury

FOMC days vs. 1 day before [-0.072, 0.102] [-0.027, 0.086] [0.23, 0.606]
FOMC days vs. 7 days before [-0.063, 0.096] [-0.038, 0.074] [0.271, 0.629]

In summary, the additional tests we implemented to address the

potential endogeneity of realized gamma and 𝜎
10𝑦𝑡
𝑡 underscore that low

interest rate volatility is not the reason for our finding that life insurers’

interest rate risk hedging is generally effective i.e., that realized gamma is

generally statistically insignificant.
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4 Concluding remarks

In this paper, we introduced a new method to measure the time-varying

residual interest rate risk of financial intermediaries after they have

executed their risk management strategies. Our estimates are daily partial

correlations obtained using a nonparametric approach on high-frequency

financial market data. We then showed how to conduct statistical inference

on our estimates by calculating confidence intervals that are asymptotically

valid under extremely weak conditions. Our method can be adapted to

include additional variables in the regression model that underpins our

framework. Another potential future extension would be to allow for

‘jumps’ when estimating realized variances and covariances (Andersen,

Bollerslev and Diebold, 2007).

Our measure can be used to evaluate the interest rate risk vulnerabilities

of any financial intermediary with high-frequency stock prices almost in

real time, which is a useful tool for market analysts, supervisors, and

policymakers. We applied our method to life insurers, whose exposure

to interest rate risk has received less attention than, for example, banks.

In doing so, we offered an alternative to the potentially misleading low-

frequency OLS estimates that are prevalent in the existing literature. We

find that life insurers are generally well-hedged against long-term interest

rate movements. That said, they are more sensitive to changes in long-
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term interest rates than P&C insurers. We then showed that a measure of

the term premium helps to explain the difference in estimated sensitivities

between the two types of insurer. Lastly, we provided evidence that our

finding that insurers are generally well hedged against interest rate risk

is not because long-term interest rate volatility is low. Comparing these

results with those of other financial intermediaries, such as banks, is another

avenue for further research.
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Appendix for online publication

A How large is the rolling window bias?

In this appendix, we demonstrate the size of the bias from estimating

the two-variable regression model on a rolling window of daily data for

insurance companies. We start from the specification:

𝑟𝑖,𝑡 = 𝛼 + 𝛽𝑟𝑚,𝑡 + 𝛾𝑟𝑦10,𝑡 + 𝜖𝑖,𝑡

where 𝑟𝑖,𝑡 is the stock price return on the index of life insurers (described

in section 3.2) on day 𝑡, 𝑟𝑚,𝑡 is the return on the benchmark S&P500, and

𝑟𝑦10,𝑡 is the return on the 10-year Treasury security. The 𝛾 coefficient in this

specification is termed rolling gamma and is a low-frequency counterpart

to the realized gamma described in section 2 of the main paper.

Selecting the size for the rolling window is typically framed as a

tradeoff between (i) including more data to reduce standard errors and

(ii) being forced to assume the parameter is stable within the window

(Robertson, 2018). We follow the standard approach in the empirical

literature estimating interest rate risk for life insurers, and assume a rolling

window of two years (Sen, 2021; Huber, 2022).

Figure 4 shows the time series of rolling gammas. The shaded region

indicates the heteroskedasticity-corrected 90 percent confidence interval for
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Figure 4: Rolling window regression results. The black line
shows the rolling gamma estimates using end-of-day data and a two-
year rolling window. The shaded region indicates the heteroskedasticity-
corrected 90 percent confidence interval for the estimates. Source: Authors’
calculations based on data from Refinitiv, the Center for Research in
Security Prices.

the estimates. There are two main takeaways from the figure. First, the

estimates are almost always statistically significant in the post-crisis period.

This finding led researchers to conclude that life insurers’ risk management

became less effective in the aftermath of the GFC and spurred a research

agenda to understand the cause of this regime switch—e.g., Sen (2021);

Koijen and Yogo (2022); Huber (2022). Second, there are large “jumps” in

the time series corresponding to periods of market volatility, such as the

beginning of the financial crisis (2008) and the pandemic (2020).

Jumps in the time series hint at a problem of time-varying conditional
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volatility in the underlying data. Figure 5 shows the problem by plotting

the square of the residuals (𝑟𝑖,𝑡 −𝑟𝑖,𝑡)2. Volatility clustering, which is clearly

present in our data, is a long-known empirical feature of financial time series

(Bollerslev, Chou and Kroner, 1992).

Figure 5: Squared residuals from rolling regression. Source:
Authors’ calculations based on data from Refinitiv, the Center for Research
in Security Prices.

The potential effects of conditional heteroskedasticity for OLS regres-

sions are well known. In some applications, such as when the primary

concern is estimating the conditional mean, a common view is that inference

can be made using the standard corrections proposed by White (1980)

or Newey and West (1987). However, as Hamilton (2008) points out,

misspecifying the errors will produce inefficient estimates and incorrect
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inference. The specific case of the rolling window OLS estimator was

studied by Cai and Juhl (2021), who showed that a bias can exist even

asymptotically with well-behaved errors. Intuitively, the rolling window

OLS estimates are weighted averages of the time-varying parameter and

the weights depend on the time-varying volatility. The asymptotic bias

arises when the two time series (parameter and volatility) are correlated.

In simulations, the rolling window OLS estimates are often unstable and

the bias can be substantial (Robertson, 2018).

One solution to the problem is to assume some structure for the

variance processes. By explicitly modeling the heteroscedasticity in the

variance-covariance matrix, we address the bias in the time series of

parameter estimates and gain efficiency. A typical approach in financial

econometrics is to appeal to autoregressive conditional heteroskedasticity

(ARCH) models (Bollerslev, Engle and Nelson, 1994). This class of flexible

models and its wide range of extensions are straightforward to implement

in off-the-shelf statistical packages. In practice, the generalized ARCH, or

‘GARCH’, model that allows for greater serial dependence in the error term

is an extremely common choice. The conditional variance of the process

for a GARCH(𝑟, 𝑝) is given by:

𝑉𝑎𝑟 (𝜖𝑡 |Ω𝑡−1) = ℎ𝑡 = 𝑎0 + 𝑎1𝜖2𝑡−1 + 𝑎2𝜖
2
𝑡−2 + · · · + 𝑎𝑝𝜖2𝑡−𝑝+

𝑏1ℎ𝑡−1 + 𝑏2ℎ𝑡−2 + · · · + 𝑏𝑟ℎ𝑡−𝑟 .
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As an exercise to gauge the size of the rolling window OLS bias in the

estimates reported in Figure 4, we assume that our three time series of

daily returns follow a multivariate GARCH(1,1) process. We specify the

joint process:

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑢𝑖,𝑡

𝑟𝑚,𝑡 = 𝛼𝑚 + 𝑢𝑚,𝑡

𝑟𝑦10,𝑡 = 𝛼𝑦10 + 𝑢𝑦10,𝑡

so

𝐸



©«
𝑟𝑖,𝑡

𝑟𝑚,𝑡

𝑟𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


=

©«
𝛼𝑖

𝛼𝑚

𝛼𝑦10

ª®®®®®®®¬
and

𝑉𝑎𝑟



©«
𝑟𝑖,𝑡

𝑟𝑚,𝑡

𝑟𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


= 𝑉𝑎𝑟



©«
𝑢𝑖,𝑡

𝑢𝑚,𝑡

𝑢𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


=

©«
𝜎2
11,𝑡 𝜎12,𝑡 𝜎13,𝑡

𝜎21,𝑡 𝜎2
22,𝑡 𝜎23,𝑡

𝜎31,𝑡 𝜎32,𝑡 𝜎2
33,𝑡

ª®®®®®®®¬
.

The last matrix—known as the dynamic conditional variance-covariance

56



matrix—can be used to form the dynamic conditional ratio:

𝛾𝐷𝐶𝑡 =
𝜎13,𝑡

𝜎2
33,𝑡

,

which is obtained after specifying GARCH(1,1) processes for each second

moment. We call the ratio 𝛾𝐷𝐶𝑡 the dynamic conditional gamma, following

the literature that uses the same technique to estimate dynamic conditional

betas (Engle, 2016).

Figure 6 compares the different estimates of gamma. The blue dotted

line shows the rolling gamma estimates, while the green solid line shows

the dynamic conditional gamma estimates. The difference between the

two estimates is particularly striking during periods of high volatility, such

as the financial crisis and the global pandemic, revealing that the rolling

gamma is highly biased and misleading. For completeness, we include

the realized gamma estimates as the brown dashed line in the figure.

The relative proximity of the realized gamma estimates and the dynamic

conditional gamma estimates during those periods of stress is a reassuring

sign that both approaches are solving the underlying problem of conditional

heteroscedasticity. Note that dynamic conditional gamma and realized

gamma use completely different data and approaches to address the same

underlying problem.

Although dynamic conditional gamma and realized gamma deliver
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Figure 6: Comparing rolling gamma, dynamic conditional
gamma, and realized gamma. The figure shows three different
estimates of the sensitivity of life insurers’ stock prices to changes in interest
rates. Source: Authors’ calculations based on data from Refinitiv, the
Center for Research in Security Prices.
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similar parameter estimates, they are not the same. In particular, the

empirical approach that underpins the dynamic conditional gamma is

known to suffer from substantial limitations (Caporin and McAleer, 2013).

As a stated data representation—rather than derived model—the dynamic

conditional gamma has no moments or desirable asymptotic properties.

It serves our purposes as a diagnostic tool that reveals a huge bias in

rolling gamma. But to avoid reliance on the imposed structure and—most

importantly—to conduct valid inference, we strongly prefer the empirical

approach that uses realized variances and covariances in our paper.

B Hypothesis testing using the subsampling

method

In each day 𝑡 ∈ {1, . . . , 𝑇}, we estimate 𝛾𝑡 using the following linear

regression model

𝑟𝑖, 𝑗 ,𝑠 = 𝛼𝑡 + 𝛽𝑡𝑟𝑚, 𝑗,𝑠 + 𝛾𝑡𝑟𝑦10, 𝑗 ,𝑠 + 𝜖𝑖, 𝑗 ,𝑠

on a sample of 𝑛 = 388 observations corresponding to each of the 388 trading

minutes for day 𝑡 between 9:31am and 3:59pm indexed by 𝑠. We calculate

a confidence interval for each of the daily 𝛾𝑡 using subsampling following

Politis et al. (1999) under the assumption that the errors are asymptotically
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stationary. Asymptotic stationarity means that, for example, the errors

could follow an AR(1) process with autocorrelation parameter strictly less

than one and heteroskedastic innovations.

To simplify the exposition of subsampling, we rewrite the linear

regression model in matrix form as

y = Xβ + ϵ,

where y and ϵ are 𝑛 × 1 vectors, β is a 𝑝 × 1 vector which includes 𝛾𝑡 as

an element and X is an 𝑛× 𝑝 matrix of five-minute returns and a constant.

The estimator of β based on X and y is given by β̂ ≡ (X′X)−1X′y.

For any 𝑏 < 𝑛 such that 𝑏 > 𝑝, define the subvectors and submatrices

y𝑏,𝑠 ≡ (𝑦𝑠, . . . , 𝑦𝑠+𝑏−1)′ , ϵ𝑏,𝑠 ≡ (𝜖𝑠, . . . , 𝜖𝑠+𝑏−1)′ and (5)

X𝑏,𝑠 ≡

©«
x′
𝑠

...

x′
𝑠+𝑏−1

ª®®®®®®®¬
, where X ≡

©«
x′
1

...

x′
𝑛

ª®®®®®®®¬
(6)

The estimator of β based on X𝑏,𝑠 and y𝑏,𝑠 is given by

β̂𝑛,𝑏,𝑠 ≡ (X′
𝑏,𝑠X𝑏,𝑠)−1X′

𝑏,𝑠y𝑏,𝑠 .

Denote by 𝐽𝑏 (𝑃) the sampling distribution of the normalized statistic
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√
𝑏(β̂𝑛,𝑏,𝑠−β), where 𝑃 is the probability law governing the estimator β̂𝑛,𝑏,𝑠,

which is unknown. For any Borel set 𝐴 ∈ R𝑝, let

𝐽𝑏 (𝐴, 𝑃) = 𝑃𝑟𝑜𝑏𝑃{
√
𝑏(β̂𝑛,𝑏,𝑠 − β) ∈ 𝐴}.

The approximation to 𝐽𝑛 (𝐴, 𝑃) is defined by

𝐿𝑛,𝑏 (𝐴) =
1

𝑛 − 𝑏 + 1

𝑛−𝑏+1∑︁
𝑠=1

1{
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂) ∈ 𝐴}.

Therefore, subsampling consist of evaluating a statistics on an exhaustive

set of subsamples of size 𝑏 < 𝑛 that are created from the original sample of

size 𝑛 and estimating the distribution of this statistics normalized by
√
𝑏.

As should be clear, each subsample contains consecutive observations from

the original time series sample. Therefore, each subsample is drawn from

the true data generating process.

In what follows we summarize the main result from subsampling related

to the estimation of a daily 𝛾𝑡 using intra-day time series observation. Note

that our limiting concept is that the number of equally spaced intraday

returns approaches infinity. We refer the readers to Politis et al. (1999) for

details and proofs.

Assumption 1 There exists a limiting law 𝐽 (𝑃) such that

1. 𝐽𝑛 (𝑃) converges weakly to 𝐽 (𝑃) as 𝑛 → ∞. This means that for
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any Borel set 𝐴 whose boundary has mass zero under 𝐽 (𝑃), we have

𝐽𝑛 (𝐴, 𝑃) → 𝐽 (𝐴, 𝑃) as 𝑛→ ∞.

2. For every Borel set 𝐴 whose boundary has mass zero under 𝐽 (𝑃) and

for any index sequence {𝑠𝑏}, we have 𝐽𝑏,𝑠𝑏 (𝐴, 𝑃) → 𝐽 (𝐴) as 𝑏 → ∞.

Theorem B.1 (Politis et al. (1999) Theorem 4.3.1) Let {(x𝑠, 𝜖𝑠)} be

a sequence of random vectors defined on a common probability space.

Denote the mixing coefficients for the {(x𝑠, 𝜖𝑠)} sequence by 𝛼(·). Define

𝑇𝑘,𝑠 ≡
1
√
𝑘

𝑠+𝑘−1∑︁
𝑎=𝑠

x𝑎ϵ𝑎 , 𝑉𝑘,𝑠 ≡ 𝐶𝑜𝑣(𝑇𝑘,𝑠) , and 𝑀𝑘,𝑠 ≡ 𝐸 (X′
𝑘,𝑠X𝑘,𝑠/𝑘).

Assume the following conditions hold. For some 𝛿 > 0,

• 𝐸 (x𝑠𝜖𝑠) = 0 for all 𝑠,

• 𝐸 |x𝑠, 𝑗𝜖𝑠 |2+2𝛿 ≤ Δ1 for all 𝑠 and all 1 ≤ 𝑗 ≤ 𝑝,

• 𝐸 |x𝑠, 𝑗 |4+2𝛿 ≤ Δ2 for all 𝑠 and all 1 ≤ 𝑗 ≤ 𝑝,

• 𝑉𝑘,𝑠 → 𝑉 > 0 uniformly in 𝑠 as 𝑘 → ∞,

• 𝑀𝑘,𝑠 → 𝑀 > 0 uniformly in 𝑠 as 𝑘 → ∞,

• 𝐶 (4) ≡ ∑∞
𝑘=1(𝑘 + 1)2𝛼 𝛿

4+𝛿 (𝑘) ≤ 𝐾.

Furthermore, assume that 𝑏/𝑛→ 0 and 𝑏 → ∞ as 𝑛→ ∞. Letting 𝐽 (𝑃) =

𝑁 (0, 𝑀−1𝑉𝑀−1). Then:
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i. 𝐿𝑛,𝑏 (𝐴) → 𝐽 (𝐴, 𝑃) in probability for each Borel set A whose boundary

has mass zero under 𝐽 (𝑃).

ii. Let 𝑍 be a random vector with L(𝑍) = 𝐽 (𝑍). For a norm | | cot | |

on R𝑘 , define univariate distributions 𝐿𝑛,| | cot | | and 𝐽| | cot | | (𝑃) in the

following way:

𝐿𝑛,𝑏,| | cot | | (𝑥) =
1

𝑛 − 𝑏 + 1

𝑛−𝑏+1∑︁
𝑠=1

1{| |
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂ | |) ≤ 𝑥}

𝐽| | cot | | (𝑥, 𝑃) = 𝑃𝑟𝑜𝑏{| |𝑍 | | ≤ 𝑥}.

For 𝛼 ∈ (0, 1), let

𝑐𝑛,𝑏,| |·| | (1 − 𝛼) = inf{𝑥 : 𝐿𝑛,𝑏,| |·| | (𝑥) ≥ 1 − 𝛼}.

Correspondingly, define

𝑐 | |·| | (1 − 𝛼, 𝑃) = inf{𝑥 : 𝐽| |·| | (𝑥, 𝑃) ≥ 1 − 𝛼}.

If 𝐽| |·| | (·, 𝑃) is continuous at 𝑐 | |·| | (1 − 𝛼, 𝑃) then

𝑃𝑟𝑜𝑏𝑃{| |
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂ | | ≤ 𝑐𝑛,𝑏,| |·| | (1 − 𝛼)} → 1 − 𝛼 as 𝑛→ ∞.
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Thus, the asymptotic coverage probability under 𝑃 of the region

{β : | |
√
𝑏(β − β̂ | | ≤ 𝑐𝑛,𝑏,| |·| | (1 − 𝛼)}

is the nominal level 1 − 𝛼.

Theorem B.1 shows that we can derive asymptotically valid confidence

intervals for the daily estimator β̂ using 𝐿𝑛,𝑏 (𝐴) because it is a consistent

estimator of 𝐽 (𝐴, 𝑃). By exploiting the usual duality between the

construction of a confidence interval for 𝛾𝑡 and the construction of a

hypothesis test about 𝛾𝑡 , subsampling allows us to make asymptotically

valid inference about the true 𝛾𝑡 . In our application, we wish to test the

null hypothesis that the daily 𝛾𝑡 is statistically different from 0. Under the

null, insurers are hedged against interest rate risk as their stock price is

not sensitive to movement in the ten-year treasury rate. If the value of the

estimated daily 𝛾𝑡 falls outside the daily confidence interval, we reject the

null hypothesis on that day.

Subsampling is not as well known as the bootstrap method in economics

and finance, which warrants a cursory comparison—see Politis et al. (1999)

for textbook-length treatment. The most relevant bootstrap method for our

time series application is the so-called Moving Blocks Bootstrap (MBB).

As with subsampling, MBB breaks down the original time series to smaller

blocks of consecutive observations, which preserves the serial correlation
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structure within each block. Practically, the main difference is that MBB

draws samples with replacement from the blocks and connects the sampled

blocks together to form a bootstrap sample of size 𝑛. Therefore, by

construction, MBB imposes the assumption that blocks of an arbitrary size

𝑏 are uncorrelated. This assumption about the unknown data generating

process is rather strong and likely to be violated in our application. From

a technical point view, the bootstrap method requires that the distribution

of the statistic of interest be locally smooth as a function of the unknown

model. Establishing this result, even if it is indeed true, would be non-

trivial. With subsampling, we do not need to make these assumptions or

verify the smoothness of the distribution under the true model to draw

asymptotically valid inferences. All that is required is that our normalized

statistic has a limit distribution under the true model.
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C Summary statistics for Section 3.4

Table 6: Summary statistics. This table reports summary statistics
for the variables used to analyze the determinants of the significance of
realized gamma. 𝛾𝑖,𝑡 is realized gamma for insurer type 𝑖 ∈ {Life, P&C}.
The binary variable 𝟙(𝛾𝑖,𝑡<0) takes the value 1 when realized gamma for
insurer type 𝑖 is statistically significant and 0 otherwise. 𝑇𝑃𝑡 is the term
premium estimate from Adrian et al. (2013), 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 is the Moody’s
Baa-Aaa seasoned corporate spread, and 𝐹𝐶𝑡 is the ICE BoA Single-A US
corporate index option-adjusted spread. 𝜎Life

𝑡 is the realized volatility of
the intraday returns of life insurers. 𝜎10yt

𝑡 is the realized volatility of the
intraday returns on 10-year Treasury. The statistics for 𝜎Life

𝑡 and 𝜎
10yt
𝑡

are multiplied by 1e+4 for legibility. Source: Authors’ calculations based
on data from Refinitiv, the Center for Research in Security Prices, FRED,
and Adrian et al. (2013).

Variable No. obs. Mean Median Std. Dev. p25 p75

𝛾Life,𝑡 3,901 -0.19 -0.16 0.31 -0.34 -0.02
𝟙(𝛾Life,𝑡<0) 3,923 0.32 0 0.47 0 1
𝛾𝑃&𝐶,𝑡 3,901 -0.12 -0.09 0.22 -0.21 0.01
𝟙(𝛾P&C,𝑡

<0) 3,923 0.18 0 0.38 0 0
𝑇𝑃𝑡 3,896 0.54 0.30 1.10 -0.33 1.51
𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 3,897 1.08 0.96 0.47 0.82 1.19
𝐹𝐶𝑡 3,921 1.49 1.17 1.01 0.94 1.64
𝜎

10yt
𝑡 3,923 0.24 0.16 0.31 0.10 0.28
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D Data citations

• Refinitiv

• Center for Research in Security Prices, CRSP 1925 US Indices

Database, Wharton Research Data Services, http://www.whartonwrds.

com/datasets/crsp/

• FRED API, accessed using third party R software package fredr,

https://fred.stlouisfed.org/docs/api/fred/

– ‘BAA’ — Moody’s, Moody’s Seasoned Baa Corporate Bond

Yield [BAA], retrieved from FRED, Federal Reserve Bank of

St. Louis; https://fred.stlouisfed.org/series/BAA

– ‘AAA’ — Moody’s, Moody’s Seasoned Aaa Corporate Bond

Yield [AAA], retrieved from FRED, Federal Reserve Bank of

St. Louis; https://fred.stlouisfed.org/series/AAA
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